360 research outputs found

    Fibroblast Growth Factor 21 and Browning of White Adipose Tissue

    Get PDF
    Interest has been focused on differentiating anatomical, molecular, and physiological characteristics of the types of mammalian adipose tissues. White adipose tissue (WAT) and brown adipose tissue (BAT) are the two main forms of adipose tissue in humans. WAT functions as an endocrine organ and serves as a reservoir of energy in the form of triglycerides. The hormones released by WAT are called adipokines. BAT consists of a group of specialized cells with abundant uncoupling protein 1 (UCP1) in the inner mitochondrial membrane and also fulfills endocrine functions. Following the identification of functional (BAT) in human adults, there has been a great deal of interest in finding out how it is induced, its localization, and the mechanisms by which it regulates thermogenesis. Fibroblast growth factor 21 (FGF21) is a key regulator of the differentiation to brown adipocytes. The main mechanisms occur through enhancing UCP1 expression. In addition, following exposure to cold or exercise, FGF21 induces upregulation of local peroxisome proliferator-activated receptor gamma co-activator (PGC)-1-alfa and thus promotes thermogenesis in adipose tissue and skeletal muscle. FGF21 integrates several pathways allowing the regulation of human energy balance, glucose levels, and lipid metabolism. Such mechanisms and their clinical relevance are summarized in this review

    Total and high molecular weight adiponectin have similar utility for the identification of insulin resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance (IR) and related metabolic disturbances are characterized by low levels of adiponectin. High molecular weight adiponectin (HMWA) is considered the active form of adiponectin and a better marker of IR than total adiponectin. The objective of this study is to compare the utility of total adiponectin, HMWA and the HMWA/total adiponectin index (S<sub>A </sub>index) for the identification of IR and related metabolic conditions.</p> <p>Methods</p> <p>A cross-sectional analysis was performed in a group of ambulatory subjects, aged 20 to 70 years, in Mexico City. Areas under the receiver operator characteristic (ROC) curve for total, HMWA and the S<sub>A </sub>index were plotted for the identification of metabolic disturbances. Sensitivity and specificity, positive and negative predictive values, and accuracy for the identification of IR were calculated.</p> <p>Results</p> <p>The study included 101 men and 168 women. The areas under the ROC curve for total and HMWA for the identification of IR (0.664 <it>vs</it>. 0.669, <it>P </it>= 0.74), obesity (0.592 <it>vs</it>. 0.610, <it>P </it>= 0.32), hypertriglyceridemia (0.661 <it>vs</it>. 0.671, <it>P </it>= 0.50) and hypoalphalipoproteinemia (0.624 <it>vs</it>. 0.633, <it>P </it>= 0.58) were similar. A total adiponectin level of 8.03 μg/ml was associated with a sensitivity of 57.6%, a specificity of 65.9%, a positive predictive value of 50.0%, a negative predictive value of 72.4%, and an accuracy of 62.7% for the diagnosis of IR. The corresponding figures for a HMWA value of 4.25 μg/dl were 59.6%, 67.1%, 51.8%, 73.7% and 64.2%.</p> <p>The area under the ROC curve of the S<sub>A </sub>index for the identification of IR was 0.622 [95% CI 0.554-0.691], obesity 0.613 [95% CI 0.536-0.689], hypertriglyceridemia 0.616 [95% CI 0.549-0.683], and hypoalphalipoproteinemia 0.606 [95% CI 0.535-0.677].</p> <p>Conclusions</p> <p>Total adiponectin, HMWA and the S<sub>A </sub>index had similar utility for the identification of IR and metabolic disturbances.</p

    Zinc associated nanomaterials and their intervention in emerging respiratory viruses:Journey to the field of biomedicine and biomaterials

    Get PDF
    Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn(2+)) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges

    Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials.

    Get PDF
    Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges

    Ciprofibrate therapy in patients with hypertriglyceridemia and low high density lipoprotein (HDL)-cholesterol: greater reduction of non-HDL cholesterol in subjects with excess body weight (The CIPROAMLAT study)

    Get PDF
    BACKGROUND: Hypertriglyceridemia in combination with low HDL cholesterol levels is a risk factor for cardiovascular disease. Our objective was to evaluate the efficacy of ciprofibrate for the treatment of this form of dyslipidemia and to identify factors associated with better treatment response. METHODS: Multicenter, international, open-label study. Four hundred and thirty seven patients were included. The plasma lipid levels at inclusion were fasting triglyceride concentrations between 1.6–3.9 mM/l and HDL cholesterol ≤ 1.05 mM/l for women and ≤ 0.9 mM/l for men. The LDL cholesterol was below 4.2 mM/l. All patients received ciprofibrate 100 mg/d. Efficacy and safety parameters were assessed at baseline and at the end of the treatment. The primary efficacy parameter of the study was percentage change in triglycerides from baseline. RESULTS: After 4 months, plasma triglyceride concentrations were decreased by 44% (p < 0.001). HDL cholesterol concentrations were increased by 10% (p < 0.001). Non-HDL cholesterol was decreased by 19%. A greater HDL cholesterol response was observed in lean patients (body mass index < 25 kg/m(2)) compared to the rest of the population (8.2 vs 19.7%, p < 0.001). In contrast, cases with excess body weight had a larger decrease in non-HDL cholesterol levels (-20.8 vs -10.8%, p < 0.001). There were no significant complications resulting from treatment with ciprofibrate. CONCLUSIONS: Ciprofibrate is efficacious for the correction of hypertriglyceridemia / low HDL cholesterol. A greater decrease in non-HDL cholesterol was found among cases with excess body weight. The mechanism of action of ciprofibrate may be influenced by the pathophysiology of the disorder being treated

    Development and validation of a screening score for prediabetes and undiagnosed diabetes

    Get PDF
    Objective. To develop and validate an easy-to-use risk score to detect prediabetes and undiagnosed diabetes in Mexican population. Materials and methods. Using information from the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ)’s cohort study of 10 234, risk factors were identified and included in stratified by sex multiple logistic regression models. The beta coefficients of the final model were multiplied by 10, thus obtaining the weights of each variable in the score. Results. The proposed score correctly classifies 55.4% of women with undiagnosed diabetes and 57.2% of women with prediabetes or diabetes. While for men it correctly classifies them at 68.6% and 69.9%, respectively. Conclusions. We present the design and validation of a risk score stratified by sex, to determine if an adult could have prediabetes or diabetes, in which case laboratory studies should be performed to confirm or not the diagnosis

    Triglyceride-rich lipoproteins and their remnants : metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society

    Get PDF
    Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD. [GRAPHICS] .Peer reviewe
    corecore